Performance Comparison between Back Propagation, Rpe and Mrpe Algorithms for Training Mlp Networks

نویسنده

  • Mohd Yusoff Mashor
چکیده

This paper presents the performance comparison between back propagation, recursive prediction error (RPE) and modified recursive prediction error (MRPE) algorithms for training multilayered perceptron networks. Back propagation is a steepest descent type algorithm that normally has slow convergence rate and the search for the global minimum often becomes trapped at poor local minima. RPE and MRPE are based on Gaussian-Newton type algorithm that generally provides better performance. The current study investigates the performance of three algorithms to train MLP networks. Two real data sets were used for the comparison. Its was found that the RPE and MRPE are much better than the back propagation algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

آموزش شبکه عصبی MLP در فشرده‌سازی تصاویر با استفاده از روش GSA

Image compression is one of the important research fields in image processing. Up to now, different methods are presented for image compression. Neural network is one of these methods that has represented its good performance in many applications. The usual method in training of neural networks is error back propagation method that its drawbacks are late convergence and stopping in points of lo...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Performance Comparison on Face Recognition System Using Different Variants of Back-Propagation Algorithm with Radial Basis Function Neural Networks

This paper presents the performance comparison of two architectures of neural networks: multi-layer perceptron (MLP) neural networks and radial basis function (RBF) neural networks on face recognition system (FRS). We are training MLP using different variants of back-propagation (BP) algorithm. AT&T database has been used for performance comparison. The BP is gradient descent based iterative al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001